Die schriftliche Division ist in vielen Bundesländern ab dem zweiten Halbjahr des 4. Schuljahres ein Thema des Mathematikunterrichts und wie bei allen anderen schriftlichen Algorithmen treten auch bei diesem Algorithmus spezifische Probleme und Fehler auf.

Im Rahmen ihrer Bachelorarbeit haben sich Bianca Arbogast & Kathrin Dürwald (2011) daher mit typischen Fehlern und deren Entstehung bei der schriftlichen Division auseinandergesetzt, indem sie Arbeitsblätter entworfen und mit diesen eine Studie in fünften Klassen durchgeführt haben. Die Durchführung der Studie fand im ersten Schulhalbjahr statt, weshalb sie nicht in der Grundschule durchgeführt werden konnte.

Auf dieser Seite werden die wesentlichen Erkenntnisse der Arbeit vorgestellt und anhand von Schülerdokumenten illustriert.

Burak rechnet: 1211:7=1613

Der Fünftklässler Burak rechnet die Aufgabe 1211:7 schriftlich. Es scheint ihn wenig zu stören, dass sein Ergebnis 1613 größer ist als der Dividend 1211.

Eigenaktivität

Wie kommt Burak zu seinem Ergebnis 1613? Wie könnte man Burak unterstützen, diesen Fehler in Zukunft zu vermeiden?

Schülerdokument von Burak: Schriftliche Rechnung der Aufgabe „1211 geteilt durch 7“. Unter der Aufgabe stellengerecht versetzt: „7“, „51“, „42“, „91“, „91“, „0“. Ergebnis: „1613“.

Buraks Lösung

Eine mögliche Erklärung finden Sie hier:

Erklärung Einstiegsaufgabe

 Hintergrundwissen zur schriftlichen Division

Der Standardalgorithmus der schriftlichen Division gilt allgemein als der schwierigste der schriftlichen Rechenverfahren, da zahlreiche Anforderungen an die Kinder gestellt werden (vgl. Gerster 1982, S. 164).

Der ohnehin schon umfassende Algorithmus birgt zusätzliche Fehlerquellen, insbesondere des Multiplizierens, des Stellenwertverständnisses und des Subtrahierens (vgl. Padberg & Benz 2011, S. 302 ff.). Zudem erfolgt die Rechenrichtung, anders als bei den anderen schriftlichen Verfahren, von links nach rechts (vgl. Schipper u.a. 2000, S. 118).

Vielleicht ist das ein Grund dafür, dass die Bildungsstandards im Fach Mathematik für den Primarbereich zwar die geläufige Ausführung der schriftlichen Addition, Subtraktion und Multiplikation, sowie die bewusste Anwendung dieser drei Rechenverfahren bei geeigneten Aufgaben als verbindliche Anforderung festlegen, die schriftliche Division aber noch nicht einmal erwähnen (vgl. KMK 2005, S. 9).

„So weit gehen erfreulicherweise die Richtlinien und Lehrpläne der einzelnen Bundesländer allerdings doch nicht" (Padberg & Benz 2011, S. 288). So beschränkt sich z.B. der Lehrplan für das Land NRW darauf, dass die Kinder am Ende der vierten Klasse das schriftliche Divisionsverfahren für einstellige und für wichtige zweistellige Zahlen (wie z.B. 10, 12, 20, 25, 50) an Beispielen erläutern können sollen, eine sichere Ausführung wird allerdings nicht verlangt (vgl. MSW NRW 2008, S. 62).

Einzelne Schritte des schriftlichen Dividierens

Um die im nächsten Abschnitt dargestellten Fehler und Schwierigkeiten bei der schriftlichen Division besser nachvollziehen zu können, sollte man sich über die Komplexität des Algorithmus bewusst sein. Es müssen in der Regel diverse Teilschritte in einer bestimmten Reihenfolge durchlaufen werden, um den Quotienten zu ermitteln. Folgende Schritte sind nach Schipper u.a. (2000, S. 114 ff.) im Allgemeinen notwendig:

1. Überschlagsrechnung
2. Ermitteln des ersten Teildividenden
3. Schätzen der ersten Quotientenziffer
4. Multiplikation
5. Subtraktion
6. Herunterholen der nächsten Ziffer

Im Folgenden werden die oben beschriebenen Schritte anhand eines Beispiels des Fünftklässlers Josef veranschaulicht.

Schülerdokument von Josef: Schriftliche Rechnung der Aufgabe „936 geteilt durch 4“. Unter der Aufgabe stellengerecht versetzt: „8“, „13“, „12“, „16“, „16“, „0“. Ergebnis: „234“.
Josef

Überschlagsrechnung: 960:4 = 240

4 passt in die 9 zwei Mal
(Ermitteln des ersten Teildividenden und Schätzen der ersten Quotientenziffer)

2 mal 4 gleich 8
(Multiplikation)

9 minus 8 gleich 1
(Subtraktion)

3 herunterholen
(Herunterholen der nächsten Ziffer)

Diese Schritte werden immer wieder durchlaufen bis alle Ziffern des Dividenden einmal heruntergeholt worden sind.

 

Da die schriftliche Division in der Grundschule in NRW nur eingeführt wird, aber nicht sicher von den Kindern beherrscht werden muss (vgl. MSW NRW 2008, S. 62), sollte im Sinne der Fortsetzbarkeit in der Sekundarstufe darauf geachtet werden, welche Grundvorstellung der Division (Aufteilen oder Verteilen) bei der Durchführung des Algorithmus angesprochen wird.

Schipper u.a. (2000, S. 115 ff.) verdeutlichen, warum es sinnvoller ist, die Sprechweise und Vorstellung des Aufteilens (im Sinne von "Passen" wie im obigen Beispiel von Josef) für die schriftliche Division zu bevorzugen:

Zum Einen wird das Verfahren des schriftlichen Dividierens in den weiterführenden Schulen auf zwei- und dreistellige Divisoren erweitert. Diese Aufgaben sind kaum mehr im Sinne des Verteilens zu lösen. Zum Anderen profitieren auch schwächere Schüler von dieser Sprechweise.

Manche Kinder beherrschen in der vierten Klasse das kleine 1x1 noch nicht vollständig. Für sie ist das schrittweise Herantasten an den Teildividenden eine große Hilfe, da sie dabei operative Beziehungen ausnutzen können. Wenn zum Beispiel die Aufgabe „34:8" gerechnet werden soll, können die Kinder durch schrittweises Annähern die Lösung finden.

  • 3 mal 8 gleich 24 ⇒ 8 passt in die 24 drei Mal;
  • 24 + 8 = 32 ⇒ 8 passt in die 32 vier Mal;
  • 32 ist das größte Vielfache von 8, welches in 34 enthalten ist, ⇒ also ist die Quotientenziffer 4

(vgl. Schipper u.a. 2000, S. 116 f.)

Typische Fehler

Arbogast & Dürwald (2011) haben im Rahmen ihrer Bachelorarbeit 222 Kindern aus fünften Klassen Aufgaben (im Sinne einer Standortbestimmung) zur schriftlichen Division vorgelegt.

Im Folgenden werden typische Fehler aufgezeigt, die häufig bei der schriftlichen Division auftreten (vgl. Padberg & Benz 2011, S. 302 ff.). Diese werden anhand von Schülerdokumenten aus der oben genannten Bachelorarbeit veranschaulicht.

 

1. Orientierungsfehler

(Schwierigkeiten beim Zusammenfassen des Teildividenden)

Fehlertyp: Ziffer wird an falscher Stelle heruntergeholt

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „22545 geteilt durch 5“. Unter der Aufgabe stellengerecht versetzt: „20“, „22“, „20“, „25“, „25“, „04“, „0“, „45“, „45“, „0“. Ergebnis: „44509“.

Nach der ersten Teildivision hat Nirsine die Differenz „2" mit der heruntergeholten Ziffer 2 zusammengefasst, anstatt die Ziffer 5 herunterzuholen.

 

Fehlertyp: Zu viele Ziffern zusammengefasst

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „936 geteilt durch 4“. Unter der Aufgabe stellengerecht versetzt: „92“, „16“, „16“, „0“. Ergebnis: „234“.

Basti hat 93 als Teildividend zusammengefasst, anstatt nur die 9 als Teildividend zu betrachten.

 

Orientierungsfehler (Kleinschrittiges Suchen des ersten Teildividenden)

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „2808 geteilt durch 8“. Unter der Aufgabe stellengerecht versetzt: „0“, „28“, „24“, „40“, „40“, „08“, „8“, „0“. Ergebnis: „0351“.

Nina erkennt nicht sofort, welche Ziffern zum ersten Teildividenden zusammengefasst werden müssen. Deshalb teilt sie erst die erste Ziffer (2), sodass der Teilquotient 0 notiert wird. Das Ergebnis ist zwar richtig, jedoch besteht bei diesem Vorgehen das Risiko, die ersten Ziffern des Dividenden falsch abzuschreiben.

 

Orientierungsfehler (Schwierigkeiten beim Notieren der Zahlen/Ziffern)

Fehlertyp: In der Spalte verrutscht

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „13780 geteilt durch 20“. Unter der Aufgabe versetzt aber nicht stellengerecht: „120“, „172“, „160“, „180“, „180“, „000“, „000“, „0“. Ergebnis: „650“.

Philipp ist beim Notieren der Differenz „17" eine Spalte nach rechts verrutscht. Die Ziffer 8 hat er richtig heruntergeholt. Allerdings ist er bei der Differenz nach links verrutscht und hat deshalb schon die 0 heruntergeholt. Da nun zwei Teildivisionen untereinander stehen, dividiert er einen Teildividenden davon nicht.

 

Fehlertyp: Teilquotienten zu viel notiert

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „936 geteilt durch 4“. Unter der Aufgabe stellengerecht versetzt: „8“, „13“, „12“, „16“, „16“, „0“. Ergebnis: „2334“.

Cedric hat den Teilquotienten „3" zwei Mal notiert.

 

Fehlertyp: Teilquotient fehlt

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „936 geteilt durch 4“. Unter der Aufgabe stellengerecht versetzt: „8“, „13“, „12“, „16“, „16“, „0“. Ergebnis: „24“.

Maria hat den Teilquotienten zur zweiten Teildivision nicht notiert.

 

2. Fehler beim Überschlagen der Quotientenziffer

Fehlertyp: Quotientenziffer wird zu groß/klein überschlagen

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „13780 geteilt durch 20“. Unter der Aufgabe stellengerecht versetzt: „120“, „178“, „140“, „380“, „380“, „0“. Ergebnis: „6719“.

Wie in der Einstiegsaufgabe wurde auch hier übersehen, dass der Divisor in den zweiten Teildividenden „178" noch einmal mehr hineingepasst hätte. Die Quotientenziffer wurde also zu klein überschlagen. Dadurch wird die nächste Teildivision unnötig schwer und das Ergebnis falsch.

 

3. Fehler beim Berechnen eines Teilprodukts

Fehlertyp: Schwierigkeiten beim Multiplizieren

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „25396 geteilt durch 7“. Unter der Aufgabe stellengerecht versetzt: „21“, „43“, „41“, „29“, „28“, „16“, „14“, „2“. Ergebnis: „3642 R 2“.

Laura hat den Divisor korrekt überschlagen: „7 passt in die 43 sechs Mal". Jedoch ist die anschließende Multiplikation nicht korrekt („6 mal 7 gleich 41").

 

4. Fehler bei der Subtraktion

Fehlertyp: Schwierigkeiten beim Subtrahieren

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „13780 geteilt durch 20“. Unter der Aufgabe stellengerecht versetzt: „120“, „78“, „60“, „180“, „180“, „0“. Ergebnis: „639“.

Der Fehler geschah bei der Subtraktion des ersten Teilprodukts.

 

5. Fehler im Zusammenhang mit Nullen (Schwierigkeiten mit der Zwischennull im Quotienten)

Fehlertyp: Zwischennull im Quotienten wird nicht notiert

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „22545 geteilt durch 5“. Unter der Aufgabe stellengerecht versetzt: „20“, „25“, „25“, „04“, „0“, „45“, „45“, „0“. Ergebnis: „459“.

Paul hat das Ergebnis der Teildivision 4:5 nicht im Quotienten notiert. Die Zwischennull im Quotienten fehlt.

 

Fehler im Zusammenhang mit Nullen (Schwierigkeiten mit der Endnull im Dividenden)

Fehlertyp: Endnull im Dividenden wird nicht dividiert

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „3120 geteilt durch 6“. Unter der Aufgabe stellengerecht versetzt: „30“, „12“, „12“, „00“, „00“, „0“. Ergebnis: „52“.

Celina hat die Teildivision „0 durch 6" notiert, aber nicht durchgeführt. Daher fehlt die Endnull im Quotienten.

 

6. Fehler beim Umgang mit dem Rest

Fehlertyp: Rest wird falsch/gar nicht notiert

Beispiel:

Schülerdokument: Schriftliche Rechnung der Aufgabe „5218 geteilt durch 8“. Unter der Aufgabe stellengerecht versetzt: „48“, „41“, „40“, „18“, „16“, „2“. Ergebnis: „6522“.

Marlene notiert den Rest hinter dem Quotienten nach Einfügen eines Kommas.

 

Fehleranalyse

Im Folgenden finden Sie Schülerdokumente, in denen mehrere Fehler gleichzeitig auftreten.

Eigenaktivität

Vollziehen Sie nach, wie die Kinder gedacht und gerechnet haben. Welche typischen Fehler sehen Sie in den jeweiligen Kinderdokumenten?

Schülerdokument von Lars: Schriftliche Rechnung der Aufgabe „936 geteilt durch 4“. Unter der Aufgabe stellengerecht versetzt: „80“, „13“, „12“, „1“. Ergebnis: „203 R 1“.
Lars

 

Schülerdokument von Chantal: Schriftliche Rechnung der Aufgabe „21612 geteilt durch 6“. Unter der Aufgabe stellengerecht versetzt: „18“, „36“, „36“, „012“. Ergebnis: „362“.
Chantal

 

Schülerdokument von Lelaina: Schriftliche Rechnung der Aufgabe „13780 geteilt durch 20“. Unter der Aufgabe stellengerecht versetzt: „0“, „13“, „12“, „17“, „16“, „18“, „18“, „0“. Ergebnis: „6890“.
Lelaina

Schülerdokument von Kurtulus: Schriftliche Rechnung der Aufgabe „13780 geteilt durch 20“. Unter der Aufgabe stellengerecht versetzt: „120“, „178“, „160“, „180“, „180“, „0“. Ergebnis: „6910“.
Kurtulus

 

Schülerdokument von Sören: Schriftliche Rechnung der Aufgabe „3120 geteilt durch 6“. Unter der Aufgabe stellengerecht versetzt: „6“, „12“, „6“, „60“. Ergebnis: „5210“.
Sören

Schülerdokument von Aylin: Schriftliche Rechnung der Aufgabe „13780 geteilt durch 20“. Unter der Aufgabe stellengerecht versetzt: „0“, „13“, „12“, „17“, „16“, „18“, „18“, „0“. Ergebnis: „6890“.
Aylin

Schülerdokument von Maren: Schriftliche Rechnung der Aufgabe „5218 geteilt durch 8“. Unter der Aufgabe stellengerecht versetzt: „48“, „61“, „58“, „78“, „56“, „2“. Ergebnis: „6782“.
Maren

 

Schülerdokument von Lucas: Schriftliche Rechnung der Aufgabe „13780 geteilt durch 20“. Eine weitere Reihe unter der Aufgabe stellengerecht versetzt: „0“, „13“, „12“, „17“, „12“, „58“, „54“, „40“, „40“, „0“. Ergebnis: „6692“. Dahinter noch eine durchgestrichene Null.
Lucas

Mögliche Interpretationen finden Sie, wenn Sie auf die entsprechenden Namen klicken:

Lars

Chantal

Lelaina

Kurtulus

Sören

Aylin

Maren

Lucas

 

Schüler erklären Fehler anderer Schüler

Um Fehlvorstellungen vorzubeugen, bietet es sich an, fehlerhafte Rechenwege von anderen (fiktiven) Kindern zu präsentieren und über deren fehlerhafte Rechnungen zu diskutieren (vgl. Padberg & Benz 2011, S. 306).

Derartige Aufgaben stellen einen konkreten Gesprächsanlass über die Funktionsweise des schriftlichen Divisionsalgorithmus dar. In der Studie von Arbogast & Dürwald (2011) wurde Fünftklässlern die fehlerhafte Rechnung des fiktiven Schülers Marvin vorgelegt.

Aufgabenausschnitt: „Aufgabe 6: Welchen Fehler hat Marvin gemacht?“. Darunter Darstellung der Aufgabe „2358 geteilt durch 3“. Unter der Aufgabe stellengerecht versetzt: „18“, „55“, „54“, „18“, „18“, „0“. Ergebnis: „6186“. Rechts davon leere Linien für die Schülerlösung.

In dieser Aufgabe soll ersichtlich werden, inwieweit Kinder Fehler identifizieren können:

  • Erkennen die Kinder den Fehler?
  • Wie beschreiben sie ihn?
  • Nennen sie die richtige Lösung?

Eigenaktivität

  1. Analysieren Sie zunächst selbst den Fehler auf dem obigem Arbeitsblatt (Marvins Fehler).
  2. Bevor Sie weiterlesen: Wie könnten mögliche Antworten von Viert- oder Fünftklässlern lauten?

 Eine mögliche Antwort zu Frage 1 finden Sie hier:

Analogie zur Einstiegsaufgabe

Folgende Antworten der Kinder sind besonders interessant:

Schülerdokument: „er hat den Fehler gemacht, dass er bei der Aufgabe die 18 als 180 hingeschrieben hat. Er müsste die 8 zu der 6 rechnen und den Zehner zu der 10.“ (Rechtschreibung angepasst)

Maximilians Antwort

Eine mögliche Interpretation dieser Antwort finden Sie hier:

Interpretation Maximilian

 

Schülerdokument: „Marvin hat 23 geteilt durch 3 falsch gemacht. Die geht erstmal 7 mal darein und das sind 21“.

Fabians Antwort

Fabian hat erkannt, dass der Teildividend 18 zu klein gewählt wurde und nennt den korrekten Teildividenden und den dazugehörigen Teilquotienten.

 

Schlussbemerkungen

Die häufigsten Fehler bei der schriftlichen Division sind Fehler im Zusammenhang mit Nullen. Insbesondere die Endnull im Dividenden und die Zwischennull im Quotienten führen häufig zu Fehlern. Zudem gibt es nicht selten Schwierigkeiten beim Finden des ersten Teildividenden.

Außerdem sind das Überschlagen der Quotientenziffer und anschließendes Multiplizieren häufige Fehlerquellen (vgl. Padberg & Benz 2011, S. 302 ff.).
Diese Themen und mögliche Fehlerquellen sollten also gesondert im Unterricht besprochen und thematisiert werden.

Falls Sie sich für weitere Leitideen interessieren, finden Sie hier einige Anregungen:

Weitere Anregungen für den Unterricht

Testen Sie Ihr Wissen zu dem Thema in unserem Kira-Check.

 

Verwandte Themen

Grundvorstellungen zur Division - Aufteilen und Verteilen
Division mit Rest
Halbschriftliche Division
Schriftliche Addition
Schriftliche Multiplikation
Schriftliche Subtraktion

 

Falls Sie sich für die Häufigkeiten der jeweiligen Fehlertypen interessieren, die im Rahmen der Bachelorarbeit diagnostiziert wurden, finden Sie diese unter "Häufigkeit der Fehlertypen".

Häufigkeit von Fehlertypen

 

Materialien zum Thema 'Rechnen auf eigenen Wegen' sowie 'Vom halbschriftlichen zum schriftlichen Rechnen' finden Sie auf der Website des Projekts PIK AS im PIKAS: Fortbildungsmodul: 'Lernen auf eigenen Wegen'.

 

Material

Arbeitsblätter schriftliche Division

 

Literatur

© Bianca Arbogast und Kathrin Dürwald für das KIRA-Team